use image::png::PNGEncoder; use image::ColorType; use num::Complex; use std::fs::File; use std::str::FromStr; /// Try to determine if `c` is in the Mandelbrot set, using at most `limit` /// iterations to decide. /// /// If 'c' is not a member, return `Some(i)`, where `i` is the number of iterations /// it took for `c` to leave the circle of radius 2 centered on the origin. If `c` /// seems to be a member (more precisely, if we reached the iteration limit without being /// able to prove the `c` is not a member), return `None`. pub fn escape_time(c: Complex, limit: usize) -> Option { let mut z = Complex { re: 0.0, im: 0.0 }; for i in 0..limit { if z.norm_sqr() > 4.0 { return Some(i); } z = z * z + c; } None } /// Parse the string `s` as a coordinate pair, like `"400x600"` or `"1.0,0.5"`. /// /// Specifically, `s` should have the form , where is the /// character given by the `separator` argument, and and are both /// strings and can be parsed by `T::from_str`. `separator` must be an ASCII /// character. /// /// If `s` has the proper form, return `Some<(x,y)>`. If it doesn't parse correctly, /// return `None`. pub fn parse_pair(s: &str, separator: char) -> Option<(T, T)> { match s.find(separator) { None => None, Some(index) => match (T::from_str(&s[..index]), T::from_str(&s[index + 1..])) { (Ok(l), Ok(r)) => Some((l, r)), _ => None, }, } } #[test] fn test_parse_pair() { assert_eq!(parse_pair::("", ','), None); assert_eq!(parse_pair::("10,", ','), None); assert_eq!(parse_pair::(",10", ','), None); assert_eq!(parse_pair::("10,20", ','), Some((10, 20))); assert_eq!(parse_pair::("10,20xy", ','), None); assert_eq!(parse_pair::("0.5x", 'x'), None); assert_eq!(parse_pair::("0.5x1.5", 'x'), Some((0.5, 1.5))); } /// Parse a pair of floating point numbers separated by a comma as a complex number pub fn parse_complex(s: &str) -> Option> { match parse_pair(s, ',') { Some((re, im)) => Some(Complex { re, im }), None => None, } } #[test] fn test_parse_complex() { assert_eq!(parse_complex("3.0,4.0"), Some(Complex::new(3.0, 4.0))); assert_eq!( parse_complex("1.25,-0.0625"), Some(Complex { re: 1.25, im: -0.0625 }) ); assert_eq!(parse_complex(",-0.0625"), None); } /// Given the row and column of a pixel in the output image, return the corresponding point /// on the complex plane. /// /// `bounds` is a pair giving the width and the height of the image in pixels. /// `pixel` is a (column, row) pair indicating a particular pixel in that image. /// The `upper_left` and `lower_right` parameters are points on the complex plane /// designating the area our image covers. pub fn pixel_to_point( bounds: (usize, usize), pixel: (usize, usize), upper_left: Complex, lower_right: Complex, ) -> Complex { let (width, height) = ( lower_right.re - upper_left.re, upper_left.im - lower_right.im, ); Complex { re: upper_left.re + pixel.0 as f64 * width / bounds.0 as f64, im: upper_left.im - pixel.1 as f64 * height / bounds.1 as f64, // Why subtraction here ? pixel.1 increases as we go down, // but the imaginary component increases as we go up. } } #[test] fn test_pixel_to_point() { assert_eq!( pixel_to_point( (100, 200), (25, 175), Complex { re: -1.0, im: 1.0 }, Complex { re: 1.0, im: -1.0 } ), Complex { re: -0.5, im: -0.75 } ); } /// Render a rectangle of the Mandelbrot set into a buffer of pixels. /// /// The `bounds` argument gives the width and height of the buffer `pixels`, /// which holds one grayscale pixel per byte. The `upper_left` and `lower_right` /// arguments specify points on the complex plane corresponding to the upper-left /// and lower-right corners of the pixel buffer. pub fn render( pixels: &mut [u8], bounds: (usize, usize), upper_left: Complex, lower_right: Complex, ) { assert!(pixels.len() == bounds.0 * bounds.1); for row in 0..bounds.1 { for column in 0..bounds.0 { let point = pixel_to_point(bounds, (column, row), upper_left, lower_right); pixels[row * bounds.0 + column] = match escape_time(point, 255) { None => 0, Some(count) => 255 - count as u8, }; } } } /// Write the buffer `pixels`, whose dimensions are given by `bounds`, to the /// file named `filename`. pub fn write_image( filename: &str, pixels: &[u8], bounds: (usize, usize), ) -> Result<(), std::io::Error> { let output = File::create(filename)?; let encoder = PNGEncoder::new(output); encoder.encode(pixels, bounds.0 as u32, bounds.1 as u32, ColorType::Gray(8))?; Ok(()) }